APS March Meeting 2023 YY03.00005

Geometric optimization based on first-quantized Hamiltonian using imaginary-time evolution on a quantum computer

arXiv:2210.09883

Yu-Ichiro Matsushita^{1,2,3}, <u>Hirofumi Nishi^{1,2}</u>, Taichi Kosugi^{1,2}

¹Tokyo Institute of Technology

²Quemix Inc

³National Institute for Quantum Science and Technology

<mark>2/</mark>12

Background

One of the important tasks: geometric structure optimization of molecules and crystals Quantum computer \rightarrow It is expected to accelerate the geometric structure optimization

Methodologies developed so far:

Force-field based optimization method

QPE: Kassal and Aspuru-Guzik, JCP **131**, 224102 (2009). VQE: Delgado et al., PRA **104**, 052402 (2021).

Protein folding using Quantum annealer

Perdomo-Ortiz et al., Sci. Rep. 2, 571 (2012).

Hamiltonian for electrons and nuclei

$$\mathcal{H}(\{\boldsymbol{R}_{\nu}\}_{\nu}) = \underbrace{\sum_{\ell=0}^{n_{e}-1} - \frac{1}{2m_{e}} \nabla_{\ell}^{2}}_{\ell=0} + \underbrace{\frac{1}{2} \sum_{\ell=0}^{n_{e}-1} \sum_{\ell'=0}^{n_{e}-1} v(|\hat{\boldsymbol{r}}_{\ell} - \hat{\boldsymbol{r}}_{\ell'}|)}_{\equiv \hat{\boldsymbol{V}}_{en}} + \underbrace{\sum_{\ell=0}^{n_{e}-1} \sum_{\nu=0}^{n_{e}-1} \sum_{\nu'=0}^{n_{e}-1} - Z_{\nu}v(|\hat{\boldsymbol{r}}_{\ell} - \boldsymbol{R}_{\nu}|)}_{\equiv \hat{\boldsymbol{V}}_{en}} + \underbrace{\sum_{\nu=0}^{n_{e}-1} \frac{1}{2M_{\nu}} \nabla_{\nu}^{2}}_{\equiv \hat{\boldsymbol{T}}_{n}} + \underbrace{\frac{1}{2} \sum_{\nu=0}^{n_{nucl}-1} \sum_{\nu'=0}^{n_{nucl}-1} Z_{\nu}Z_{\nu'}v(|\boldsymbol{R}_{\nu} - \boldsymbol{R}_{\nu'}|)}_{\equiv E_{nn}} + \underbrace{\sum_{\ell=0}^{n_{e}-1} v_{ext}(\hat{\boldsymbol{r}}_{\ell})}_{\equiv \hat{\boldsymbol{V}}_{ext}} \\ \text{Ignore nuclear kinetic part } \rightarrow \text{Treat nuclei as classical particles} \\ \text{(point charge)} \end{aligned}$$

We treat the target molecule as quantum mechanical electrons and classical nuclei.

By solving the Hamiltonian, we get the nuclear positions $\{R_v\}_v$ so that the total energy is the lowest.

Encoding nuclear positions on a quantum computer

We perform an ITE calculation for this superposition of all candidate geometries.

Features of this method

- \checkmark We treat the target molecule as quantum mechanical electrons and classical nuclei.
- \checkmark We find the most stable geometry by solving the Hamiltonian
- \checkmark Our approach can be applied to any organic and inorganic materials
- There is no need for knowing the energies of the candidate geometries for finding the optimal one
- ✓ We don't need to calculate the gradients of the energies for the nuclei coordinates

Quantum mechanical Classical n_e electrons $n_{\rm nucl}$ nuclei

Probabilistic Imaginary-Time Evolution (PITE) method

Kosugi, Nishiya, Nishi, and Matsushita, Phys. Rev. Res. 4, 033121 (2022)

Approximate PITE circuit within first order of imaginary-time step $\Delta \tau$

Feature: Express ITE operator with real-time evolution operators (U_{RTE})

The approximate PITE circuit uses the Hamiltonian only as black boxes, so which can be applied to any types of Hamiltonian.

Circuit for PITE steps

After sufficient PITE steps, the state with highest probability is the most stable geometry

Numerical results

(Example 1) Numerical simulations for a LiH model system Structure optimization for nuclei coupled to electrons

(Example 2) Classical nuclei-only system as a special case Structure optimization for only nuclei

(Example 3) Geometry optimization based on variational calculations Structure optimization with variational method

(Example 1) Numerical simulations for a LiH model system

Setup

2 electrons and 2 atoms in 1d space,

 $Z_{\rm H} = Z_{\rm Li} = 1$ (Li 1s electrons frozen)

All interactions are soft-Coulomb type: $v_{soft}(r; \lambda) \equiv \frac{1}{\sqrt{\lambda^2 + r^2}}$

Tempel et al, JCTC 5, 770 (2009)

Geometry optimization

 n_{qe} = 12 bits for n_e = 2 electrons n_{qn} = 3 bits for nuclei

9/12

Numerical diagonalization

By using $n_{qn} = 3$ qubits, we tried $2^{nqn} = 8$ candidate bond lengths for optimization: $d_J = 0.55 + 0.5J (J = 0, ..., 7)$

(Example 2) Classical nuclei-only system as a special case

Ar atom above a benzene molecule Treat only nuclei

Improved Lennard-Jones potential

Pirani et al, Chem. Phys. Lett. **394**, 37 (2004)

Geometry optimization using PITE

Most stable geometry has the highest probability

Reduce the number of qubits by using force-field

(Example 3) Geometry optimization based on variational calculation

Our scheme can also be adapted to variational imaginary-time evolution (VITE).

Geometry optimization of H₂⁺ model system

By using $n_{qn} = 3$ qubits, we tried $2^{nqn} = 8$ candidate bond lengths for optimization: $d_J = 0.5 + (7.5/8)J(J = 0, ..., 7)$

Jones et al., Phys. Rev. A 99, 062304 (2019)

Conclusions

Summary

- Proposed a quantum algorithm for geometry optimization. \checkmark
- The most stable geometry is calculated from a superposition of all \checkmark

This talk

Kosugi, Nishi, and Matsushita, arXiv:2210.09883

Related studies

Detail of PITE

Kosugi, Nishiya, Nishi, and Matsushita, Phys. Rev. Res. 4, 033121 (2022)

Under a magnetic field

Kosugi, Nishi, and Matsushita, arXiv:2212.13800

With amplitude amplification

Nishi, Kosugi, Nishiya and Matsushita, arXiv:2212.13816