APS March Meeting 2023 YY03.00005

Geometric optimization based on first-quantized Hamiltonian using imaginary-time evolution on a quantum computer

arXiv:2210.09883

Yu-Ichiro Matsushita ${ }^{1,2,3}$, Hirofumi Nishi ${ }^{1,2}$, Taichi Kosugi1,2

${ }^{1}$ Tokyo Institute of Technology
${ }^{2}$ Quemix Inc
${ }^{3}$ National Institute for Quantum Science and Technology

Background

One of the important tasks: geometric structure optimization of molecules and crystals
Quantum computer $\rightarrow \mathrm{It}$ is expected to accelerate the geometric structure optimization

Methodologies developed so far:
Force-field based optimization method
QPE: Kassal and Aspuru-Guzik, JCP 131, 224102 (2009).
VQE: Delgado et al., PRA 104, 052402 (2021).
Protein folding using Quantum annealer
Perdomo-Ortiz et al., Sci. Rep. 2, 571 (2012).

Born-Oppenheimer surface

Propose a quantum algorithm of exhaustive search from candidate geometries on the BornOppenheimer surface

Hamiltonian for electrons and nuclei

$$
\begin{aligned}
\mathcal{H}\left(\left\{\boldsymbol{R}_{\nu}\right\}_{\nu}\right)= & \underbrace{\sum_{\ell=0}^{n_{e}-1}-\frac{1}{2 m_{e}} \nabla_{\ell}^{2}}_{\equiv \hat{T}_{e}}+\underbrace{\frac{1}{2} \sum_{\ell=0}^{n_{e}-1} \sum_{\ell^{\prime}=0}^{n_{e}-1} v\left(\left|\hat{\boldsymbol{r}}_{\ell}-\hat{\boldsymbol{r}}_{\ell^{\prime}}\right|\right)}_{\equiv \hat{V}_{e e}}+\underbrace{\sum_{\ell=0}^{n_{e}-1} \sum_{\nu=0}^{n_{\text {nucl }}-1}-Z_{\nu} v\left(\left|\hat{\boldsymbol{r}}_{\ell}-\boldsymbol{R}_{\nu}\right|\right)}_{\equiv \hat{V}_{e \mathrm{en}}} \\
& +\underbrace{\sum_{\nu=0}^{n_{\text {nucl }}-1}-\frac{1}{2 M_{\nu}} \nabla_{\nu}^{2}}_{\equiv \hat{\mathrm{T}}_{n \mathrm{nn}}}+\underbrace{\frac{1}{2} \sum_{\nu=0}^{n_{\text {nucl }}-1 n_{\text {nucl }}-1} \sum_{\nu^{\prime}=0}^{n_{\nu}} Z_{\nu} Z_{\nu^{\prime}} v\left(\left|\boldsymbol{R}_{\nu}-\boldsymbol{R}_{\nu^{\prime}}\right|\right)}_{\equiv \hat{V}_{\mathrm{ext}}}+\underbrace{}_{\sum_{\ell=0}^{\sum_{e}-1} v_{\mathrm{ext}}\left(\hat{\boldsymbol{r}}_{\ell}\right)}
\end{aligned}
$$

Ignore nuclear kinetic part \rightarrow Treat nuclei as classical particles (point charge)

We treat the target molecule as quantum mechanical electrons and classical nuclei.

By solving the Hamiltonian, we get the nuclear positions $\left\{\boldsymbol{R}_{v}\right\}_{v}$ so that the total energy is the lowest.

Encoding nuclear positions on a quantum computer

Dissociation curve of two atoms
Encode the geometric candidates by using $n_{q n}$ qubits.
Sum over possible geometries

$$
|\Psi\rangle=\sum_{\boldsymbol{J}} \sqrt{w_{\boldsymbol{J}}}|\psi[\boldsymbol{J}]\rangle \otimes|\boldsymbol{J}\rangle_{3 n_{\mathrm{nucl}} n_{q \mathrm{n}}}
$$

$$
\text { e.g., } \left.n_{q n}=2 \text { (} 2^{\text {nqn }}=4 \text { candidates }\right)
$$

$$
|\Psi\rangle=\sqrt{w_{00}}|\psi[00]\rangle \otimes|00\rangle+\sqrt{w_{01}}|\psi[01]\rangle \otimes|01\rangle
$$

$$
+\sqrt{w_{10}}|\psi[10]\rangle \otimes|10\rangle+\sqrt{w_{11}}|\psi[11]\rangle \otimes|11\rangle
$$

We perform an ITE calculation for this superposition of all candidate geometries.

Features of this method

\checkmark We treat the target molecule as quantum mechanical electrons and classical nuclei.
\checkmark We find the most stable geometry by solving the Hamiltonian
\checkmark Our approach can be applied to any organic and inorganic materials
\checkmark There is no need for knowing the energies of the candidate geometries for finding the optimal one
\checkmark We don't need to calculate the gradients of the energies for the nuclei coordinates

Probabilistic Imaginary-Time Evolution (PITE) method

Kosugi, Nishiya, Nishi, and Matsushita, Phys. Rev. Res. 4, 033121 (2022)
Approximate PITE circuit within first order of imaginary-time step $\Delta \tau$

Feature: Express ITE operator with real-time evolution operators ($U_{\text {RTE }}$)
Input
Output
$|\psi\rangle \otimes|0\rangle \longrightarrow \mathcal{M}|\psi\rangle \otimes|0\rangle+\sqrt{\sqrt{1-\mathcal{M}^{2}}|\psi\rangle \otimes|1\rangle}$

$$
\mathcal{M}=\gamma e^{-\mathcal{H} \Delta \tau}
$$

ancilla bit
success state
failure state

The approximate PITE circuit uses the Hamiltonian only as black boxes, so which can be applied to any types of Hamiltonian.

Circuit for PITE steps

Gate for giving initial weights to candidates (If no information, equal weights are appropriate.)

Gate for generating reference electronic states Nuclei
Electrons $|0\rangle_{3 n_{e} n_{g e}}$
After sufficiently many steps, we measure a geometry $\mid \mathrm{J}>$ on nuclear register with the probability w_{J}.

$$
|\Psi\rangle=\sum_{\boldsymbol{J}} \sqrt{w_{\boldsymbol{J}}}|\psi[\boldsymbol{J}]\rangle \otimes|\boldsymbol{J}\rangle_{3 n_{\mathrm{nucl}} n_{q \mathrm{n}}}
$$

Numerical results

(Example 1) Numerical simulations for a LiH model system

 Structure optimization for nuclei coupled to electrons(Example 2) Classical nuclei-only system as a special case Structure optimization for only nuclei
(Example 3) Geometry optimization based on variational calculations Structure optimization with variational method

(Example 1) Numerical simulations for a LiH model system

Setup

Numerical diagonalization

2 electrons and 2 atoms in 1d space,
$Z_{\mathrm{H}}=Z_{\mathrm{Li}}=1$ (Li 1 s electrons frozen)
All interactions are soft-Coulomb type: $\quad v_{\text {soft }}(r ; \lambda) \equiv \frac{1}{\sqrt{\lambda^{2}+r^{2}}}$
Tempel et al, JCTC 5, 770 (2009)

Geometry optimization

$n_{q e}=12$ bits for $n_{e}=2$ electrons
$n_{q n}=3$ bits for nuclei

By using $n_{q n}=3$ qubits, we tried $2^{\text {nqn }}=8$ candidate bond lengths for optimization: $d_{J}=0.55+0.5 J(J=0, \ldots, 7)$

(Example 2) Classical nuclei-only system as a special case

Ar atom above a benzene molecule Treat only nuclei

Improved Lennard-Jones potential
Pirani et al, Chem. Phys. Lett. 394, 37 (2004)

Geometry optimization using PITE

$n_{q n}=3$ for each of x and z directions

Interaction energy

Most stable geometry has the highest probability

Reduce the number of qubits by using force-field

(Example 3) Geometry optimization based on variational calculation

Our scheme can also be adapted to variational imaginary-time evolution (VITE).

Geometry optimization of $\mathrm{H}_{2}{ }^{+}$model system

By using $n_{q n}=3$ qubits, we tried $2^{\text {nan }}=8$ candidate bond lengths for optimization: $d_{J}=0.5+(7.5 / 8) J(J=0, \ldots, 7)$

Conclusions

Summary

\checkmark Proposed a quantum algorithm for geometry optimization.
\checkmark The most stable geometry is calculated from a superposition of all
candidate geometries.

Related studies
Detail of PITE

Kosugi, Nishiya, Nishi, and Matsushita, Phys. Rev. Res. 4, 033121 (2022)

After 19th step

This talk

Kosugi, Nishi, and Matsushita, arXiv:2210.09883

Under a magnetic field

Kosugi, Nishi, and Matsushita, arXiv:2212.13800

With amplitude amplification

Nishi, Kosugi, Nishiya and Matsushita, arXiv:2212.13816

